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TABLE I

SUMMARY OF MEASURED DATA FORA C-13AND LANGE COUPI.ER AND ITS “UNFOLDED” COMPLEMENT

BANDWIDTH MEAN POWER MAX, OBVIATION MAX . MIN. MAX , MAX, DEVIATION

SPLIT FROM MEAN INSERTION ISOLATION VSWR FROM TRUE QUADRATURE

POWER SPLIT LCSS

( ;J (dB) (dB) ( dl ) (d2)

REGuLAR LANGE

COUPLER
73 3.43 5. 5 .4 18 1.32 8.5°

“UNFOLOEO” LANGE

COUPLER
68 3.3 2 “5 .32 17.5 1.27 + 2°

velop a family of broad-band backward-wave microstrip couplers

with coupling values other than 3 dB. The significant practical ad-

vantage when designing on 0.025-in ceramic microstrip may be the

elimination of ultranarrow gapwidths as required, for example, by
Podell’s “wiggly ’’-line backward-wave coupler [3 ] for coupling values

typically under 7 dB. This extension, however, has not been pursued.

ACKNOWLEDGMENT

The authors wish to thank J. Hickox and R. Pereira for their

efforts in fabrication and test.

REFERENCES

[1] J. Lange, “Interdigitated strip-line quadrature hybrid,” in 1969 G14TT Int.
Microwave Sym@., pp. 1G13.

[2] J. Garcia: D. LaC,ombe, and R. Wa”gh, cBrOadband MIC limiter-detectors for
crystal video renewers, ” to be published in Microwaves.

[3] A. Podell, “A high directivity microstrip coupler technique,” in 1969 G-MTT
Int. Microwave Sym$., pp. 33-36.

Dissipation and Scattering Matrices

of Lossy Junctions

J. HELSZAJN

Absfrac&The purpose of this short paper is to construct the

dissipation and scattering matrices of lossy junctions in terms of the

eigenvalues of the dissipation matrix. This removes the need to rely

on inequality relations between the scattering parameters of lossy
circulators. The eigenvalues of the dissipation, scattering, and

admittance matrices are related. The eigenvalues of the dissipation
matrix give the dissipation associated with each possible way of

exciting the junction. The ones of the scattering matrix give the
reflection coefficients associated with these cliff erent excitations.
The admittance eigenvalues define in each instance the eigennet.
works of the junction. This leads to the definition of the entries of

the dissipation matrix in terms of the loaded and unloaded Q-factors

of the junction eigennetworks. The scattering matrices of a number
of 10SSY 3-port junctions are also constructed directly in terms of the

elements of the eigennetworks.

I. INTRODUCTION

The general relation between the coefficients of the scattering

matrix for a lossy symmetrical 3-port circulator has been discussed

by a number of authors [1]- [4 ]. The insertion loss has also been

derived in the case of the lumped-element circulator [5]. The most

general relation between the scattering coefficients has been given

graphically [3] in terms of the dissipation matrix. Inequality relations

for semi-ideal circulators in which the insertion loss is not zero anrJ

either the isolation or VSWR is ideal have also been &cus~ed [4].

The purpose of this short paper is to directly construct the dissipa-

tion and scattering matrices of 10SSY junctions in terms of the eigen-

values of the dissipation matrix. This removes the need to rely on

inequality relations between the scattering parameters of lossy cir-

culators. The scattering matrix of 10SSY circulators is also constructed

directly in terms of the elements of the eigennetworks.
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The \ihort paper starts by relating the eigenvalues of the dissipa.
tion, scattering, and admittance matrices. The eigenvalues of the

dissipation matrix give the dissipation associated with each possible

way of exciting the junction. The ones of the scattering matrix give

the reflection coefficients associated with these different excitations.
The admittance eigenvalues define in each instance the eigennetworks

of the j unction. This leads to the definition of the entries of the dis-
sipation matrix in terms of the loaded and unloaded Q-factors “f the

junction eigennetworks. In the most usual arrangement, one of the
eigenvalues is associated with a nonresonant shunt network that ap-
pears as a short circuit at the reference terminals of the junction, and
is therefore always unity. The other eigenvalues are the reflection

coefficients of resonant shunt networks, and the presence of loss
means that the magnitudes of these eigenvalues will depart from

unity. The amplitudes of the eigenvalues are, in general, unequal.
The theory is applied to reciprocal 3-port junctions, to 3-port

junction circulators, and to semi-ideal 3-port circulators. It may also
be applied to the scattering matrices associated with the different

stages in the adjustment of the circulators described elsewhere [7],
[11], [12].

II, EIGENVALUES OF SCATTERING AND DISSIPATION MATRICES

For a lossy circulator, the dissipation matrix Q must be positive

real [3], [6]:

Q = I – (S*)”(S) (1)

where Z is a unit matrix and S is the scattering matrix.
In the case of a symmetrical 3-pm-t junction, one has for the S

matrix

.s11 .s12 .$18

[

1s = .S13 .s11 S12 .

1

(2)

.s12 .s13 S1l

The matrix Q is given by [3], [4], [6]

[

qll q12 qla

Q = qla qll qlz
1
-1

(3)

q12 q13 qll

where

qll=l– l.sllp– 1s12(2- I.slap (4)

qlz = .S11S12* + .S12.S13* + .SIS.S1l* (5)

q13 = q12*. (6)

The matrix Q is positive real provided

I q12I < q,,. (7)

The bounds of (7) are given in [3] with ql, and I ql, I as parameters.
This gi~,es the allowable values of the scattering parameters.

In what follows, the above inequality relation between the scatter-

ing parameters will be replaced by implicit ones. This is done by

directly forming the S- and Q-matrices of the junction in terms of

eigenval ues of the dissipation matrix. These eigenvalues represent the

dissipation associated with each possible way of exciting the j unction.
They are related to the loaded and unloaded Q-factors of the junction

eigennel:works.
If the scattering and dissipation matrices have common eigenvec-

tors. their ei~envalues may be related by the following theorem...... -.Q---.
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Fig. 1. Scattering-matrix eigenvslues.

[8]:if

Qu. = qnun (8)

then

f (Q)u = f (d u (9)

where U. is an eigenvector.
Using (1) in conjunction with (9) gives, in the case of the 3-port

junction,

qo = 1 – SOSO* (lo)

q+l = 1 – S+l$+l* (11)

q-1 = 1 – S-IS–1*. (12)

Equations (10)–(12) may be used to construct the scattering matrix
in terms of the eigenvalues of the dissipation one. In a lossless j unc-

tion, the amplitudes of the scattering-matrix eigenvalues are unity,
while if the junction is lossy their amplitudes will depart from unity.
The angles between the eigenvalues that apply to a circulator with
.S,, = – 1 are shown in Fig. 1.

It is seen from the above that the eigenvalues of the dissipation
matrix represent the dissipation associated with each possible way of

exciting the junction. These eigenvalues are real quantities that be-
come zero when the corresponding ones of the scattering matrix be-

come unity. The entries of the dissipation matrix are

qo + q+l + q–l
!711 =

3
(13)

q. + q+le,zmla + q_le-i2./3

qlz =
3 (14)

qO + q+le–j2~/3 + q_1e~2r13
q13 . —

3
(15)

Here, qn represents the total dissipation of the junction and qlz is a
complex quantity that determines the allowable relation between the

scattering parameters. This has been observed in [3].
In what follows the eigenvalues of the Q-matrix will be related to

the loaded and unloaded Q-factors of the junction eigennetworks.
This does away with the need to rely on the inequality relation given

by (7).
The relation between the entries of the scattering matrix is also

obtained directly by evaluating this matrix in terms of its eigen-
values. These are given by [8]

so + $+1 + s-l
.s,, =— ~ (16)

.SO + ~+lej27/3 + ~_,g–j2r/3

S,2 =
3

(17)

so + sl+e–~zT/3 + s_1e~2m(3
s,, =

3
(18)

The scattering eigenvalues are related here to the dissipation

ones by (10)–(12).

III. EIGENVALUES OF ADMITTANCE AND DISSIPATION MATRICES

The dissipation and scattering eigenvalues can be related to the

physical variables of the junction eigennetworks by using the rela-
tion between the eigenvalues of the scattering and admittance
matrices:

l–yo

‘o=l+yo
(19)

Ye

Y
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Y-1

Fig. 2.
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Distributed eigennetworks,

1 – y+,

‘+’ = 1 + y+l

1 – y-l
—.

‘-’ = 1 + y-,

The admittance eigenvalues are related

scattering-matrix eigenvalues make by

O+;
y+] = —j cot —

2
=jtan$

(20)

(21)

to the angles that the

(22)

r

y_I = —j cot 0+ =j tan !$ .
L L

(23)

(24)

The primed and unprimed angles are shown in Fig. 1.

The equivalent circuits of the admittance eigenvalues Y+l and

Y-Z are short-circuited transmission lines of electrical length @+,’/2
and &l’/2, as shown in Fig. 2. For 3-port circulators for which
.$2 = – 1, the electrical length 6.’ of the admittance eigenvalue so is

zero. One way in which damping may be introduced into the admit-
tance equation is by adding an imaginary part ja to 8’/2.

In the presence of loss, the input admittance of the y+, network
becomes

(
t
)y+I = coth ja+J + ~+~ . (25)

The reflection coefficient of this network is

s+, = — e–~e+lj. e–fo(+l = ~–2m+ Il. e–jd+,, (26)

If 2a+J is small, (26) becomes

s+, = (1 – 2a+11)e-j@~l. (27)

Substituting (27) into (11) gives

q+l = 4cY+l. (28)

Equation (28) again shows that the dissipation eigenvalue gives the

total dissipation of the eigennetwork.
In the vicinity of the frequency at which the networks are x/4

long (0+,’ =0-,’ = 180°), they may be replaced by shunt lumped-
element resonators. This allows the variables of the distributed- and
lumped-element networks to be related. The circuit considered in this
section is the shunt resonator shown in Fig. 3, which applies to the

Y+I network. It consists of a lumped-element shunt capacitance and
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The coefficients of the scattering matrix are●

Y+1 c,

(’44)

(45)

In terms of the original variables one has

Fig. 3. Approximate lumped equivalent eigennetworks for Y+I.

(46)

(47)

(4s)

(49)

(50)

(51)

(52)

inductance. The dielectric and magnetic losses are represented by
equivalent shunt resistors.

The total normalized input impedance for this circuit is

Y+,

‘+1= J’o
— = j28+IQ+I + Q+l/Q.,+l (29) V. SCATTERING MATRIX OF LossY 3-PORT CIRCULATOR

For an ideal circulator, the angles of the eigenvalues are

where
0+1= ~

3

26+’=2E3 (30)

Here, Q+l and Q.,+l are the loaded and unloaded Q-factors of the

equivalent lumped network and CO+*is the resonant frequency of the
network.

The input admittance of the distributed network in the vicinity

of the frequency at which the network is k/4 long is, from (25), given
by

The eigen values of the scattering matrix are, therefore,

‘+’= (1-9’’”’3
‘-1=(1-?)’-’”’8Y+l =.itan~~ + a+d (1 + tan’%). (31)
.fO= =—1.

Comparing (29) and (31) gives
Using the above eigenvalues, the entries of the scattering matrix

are
~; = 2ti+1Q+1 (32)

(53)
,2

Q+I 6’+.,
%11 = — co~z –— .

Qu,+, 2
(33)

l.sl,l=l-~ (54)

provided

q+l = !?-1. (55)

In terms of the original variables, the result becomes

Combining (28) and (33) one now has

Q+I
()

0+1

rl+1=4 — COS2 — .

Q“,+r 2
(34)

In a similar way one has

Q-I() o_l
rI.1=4 — COS2—

Q.,-] 2
(35)

(56)
qo= o. (36)

(57)gO is zero because it is associated here with a nonresonant eigennet-
work.

Hence, .X, #O, S12# 1, and .%3= .S11. This is the result obtained in
[5], [10] m the case of the lumped-element circulator.

The above scattering coefficients satisfy (1), as can be seen by

forming (’7).

Fig, 4 :$hows the relation between S11 and S12 (Su = Sn).

IV. SCATTERING MATRIX OF LossY RECIPROCAL

3-PORT JUNCTION

For a reciprocal 3-port junction the degenerate eigenvalues are

equal:

S+l = S-1 = S1 (37)

q+l = q–l = ql (38)

y+l = y-l = yl. (39)

VI, SCATTERING MATRIX OF SEMI-IDEAL CIRCULATORS

Semi-ideal circulators are ones in which either S11 = O, SIZ # 1, and

.& #O, or .% #O, .% # 1, and S13 = O. The first situation is obtained

when the angle between S+I and s_I is less than 1120]. The second

case is obtained when the angle between the eigenvalues is larger

than 11201.

The scattering parameters are given in terms of their eigenvalrres

by

At the frequency at which maximum power transfer through the

junction occurs, the angles of the eigenvalues are

The scattering matrix eigenvalrres are therefore

3SII= -f+ (1-!~)@@+l+ (l-!~) e{@+.

( 2) (’-%’’ (’+’-120’ ’59)
3S,’ = – 1 + 1 – ‘s “-) ‘0+1-”0) +

( 2) (’-%) ’’(’+’+”0) ’60)
3S]3 = – 1 + 1 _ !+l ~–j(@+l+120)_

(58)()S,= 1–; (41)

.$. = —1 (42)

where

QI()~1=4 —
QuI “

(43)
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Fig, 4. Relation between S parameters of semi-ideal circulators.

where it has been assumed that one has symmetrical splitting:

0-1 = —8+1. (61)

In semi-ideal circulators, .% and S18 are completely determined
by .SU, provided it is assumed that the amplitudes of S+I and S-I are
equal and the splitting is symmetrical. This means that the latter
quantity can reobtained sirnplyby measuring either Sn or SM.

The first case to be considered is the one in which the angle

between S+I and s_I is such that S,, = O. This condition is obtained by
setting SII=O in (58). The relation between S12 and S13 is given
graphically in Fig. 4.

The second case to be considered here is the one in which the

angle between $+1 and S.-I is such that .$13=o. This condition is ob-
tained by setting S13=0 in (60). The relation between S11 and S1z
is shown in Fig. 4.

VII. CONCLUSIONS

The relation between the dissipation and scattering eigenvalues

in 10SSY junctions has been given. The results have been used to
directly construct the scattering matrices of a number of 3-port

lossy junctions. These results canalso reapplied to junctions with
unequal dissipation eigenvalues that lead to asymmetric frequency

responses of the scattering parameters.
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Correction to “Scattering by a Ferromagnetic Circular

Cylinder in a Rectangular Waveguide”

N. OKAMOTO AND Y. NAKANISHI

In the above paper,l sin-’ tin (17) (Section III-B, p. 524) should

be interpreted as m–Sin-l t, where Sin-l t denotes the principal value

of sin–l t. Therefore, (23) and (24) should read as follows:

.

(
rrxo

SU = ~ (–l)nA. ~ sin — – n Sin–l .=—
koa )

(1)
.-—* a

and

(2)

respectively. According y, Table I should be modified as shown.

The corrected numerical evaluation ofISU12+IS2112 shows that the
unitary condition of the S-matrix is satisfied within a roundoff error

for any value of parameters. This is due to the fact that the unitary

conditions of the S-matrix is guaranteed for any size of truncation in
our formulation of the paper [1]. The following is a proof of this
property. The electric field outside the post is expressed as follows:

[Hn(o(p,+),-ino.+ – (– l) Wfnm(p,-)e7fi@~]. (3)

Consider a region enclosed by two contours ABCDA and F, as shown
in Fig. 1. Application of the two-dimensional Poynting theorem to

this region yields

[2 JAB(– Ez17,*)dx + ; j~pEzHz*dajRe ~

+Re[#FE.H’*dzl‘0 ‘4)
On the contour A B and DC far from the post, E. in (3) can be re-
written in the form

and

(5)

Ez = & sin ~x.s21~–I$u (6)
a

respectively. Substitution of (5) and (6) and their corresponding
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