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TABLE 1
SUMMARY OF MEASURED DATA FOR A C-BAND LANGE COUPLER AND ITS “UNFOLDED” COMPLEMENT
BANDWIDTH | MEAN POWER | MAX,DEVIATION MAX, MIN. MAX, | MAX, DEVIATION
SPLIT FROM MEAN INSERTION | ISOLATION | VSWR FROM TRUE QUADRATURE
POWER SPLIT LCSS
(% (dB ) (dB) (d3) (dn )

REGULAR LANGE o

COUPLER 73 3.43 £ .5 b 18 1.32 8.5
"UNFOLDED"' LANGE o

COUPLER 68 3.3 x5 .32 17.5 1.27 x2

velop a family of broad-band backward-wave microstrip couplers
with coupling values other than 3 dB. The significant practical ad-
vantage when designing on 0.025-in ceramic microstrip may be the
elimination of ultranarrow gapwidths as required, for example, by
Podell’s “wiggly”-line backward-wave coupler [3]for coupling values
typically under 7 dB. This extension, however, has not been pursued.
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Dissipation and Scattering Matrices
of Lossy Junctions

J. HELSZAJN

Abstract—The purpose of this short paper is to construct the
dissipation and scattering matrices of lossy junctions in terms of the
eigenvalues of the dissipation matrix. This removes the need to rely
on inequality relations between the scattering parameters of lossy
circulators. The eigenvalues of the dissipation, scattering, and
admittance matrices are related. The eigenvalues of the dissipation
matrix give the dissipation associated with each possible way of
exciting the junction. The ones of the scattering matrix give the
reflection coefficients associated with these different excitations.
The admittance eigenvalues define in each instance the eigennet-
works of the junction. This leads to the definition of the entries of
the dissipation matrix in terms of the loaded and unloaded Q-factors
of the junction eigennetworks. The scattering matrices of a number
of lossy 3-port junctions are also constructed directly in terms of the
elements of the eigennetworks.

I. INTRODUCTION

The general relation between the coefficients of the scattering
matrix for a lossy symmetrical 3-port circulator has been discussed
by a number of authors [1]-[4]. The insertion loss has also been
derived in the case of the lumped-element circulator [5]. The most
general relation between the scattering coefficients has been given
graphically [3]in terms of the dissipation matrix. Inequality relations
for semi-ideal circulators in which the insertion loss is not zero and
either the isolation or VSWR is ideal have also been discussed [4].

The purpose of this short paper is to directly construct the dissipa-
tion and scattering matrices of lossy junctions in terms of the eigen-
values of the dissipation matrix. This removes the need to rely on
inequality relations between the scattering parameters of lossy cir-
culators, The scattering matrix of lossy circulators is also constructed
directly in terms of the elements of the eigennetworks.
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The short paper starts by relating the eigenvalues of the dissipa-
tion, scattering, and admittance matrices. The eigenvalues of the
dissipation matrix give the dissipation associated with each possible
way of exciting the junction. The ones of the scattering matrix give
the reflection coefficients associated with these different excitations.
The admittance eigenvalues define in each instance the eigennetworks
of the junction. This leads to the definition of the entries of the dis-
sipation matrix in terms of the loaded and unloaded Q-factors of the
junction eigennetworks. In the most usual arrangement, one of the
eigenvaliles is associated with a nonresonant shunt network that ap-
pears as a short circuit at the reference terminals of the junction, and
is therefore always unity. The other eigenvalues are the refiection
coefficients of resonant shunt networks, and the presence of loss
means that the magnitudes of these eigenvalues will depart from
unity. The amplitudes of the eigenvalues are, in general, unequal.

The theory is applied to reciprocal 3-port junctions, to 3-port
junction circulators, and to semi-ideal 3-port circulators. It may also
be applied to the scattering matrices associated with the different
s[tag]es[in ]the adjustment of the circulators described elsewhere [7],

11, [12].

II. EIGENVALUES OF SCATTERING AND DisSSIPATION MATRICES

For a lossy circulator, the dissipation matrix @ must be positive
real [3], [6]:

Q =1~ (S%7(S) M
where I is a unit matrix and S is the scattering matrix.

In the case of a symmetrical 3-port junction, one has for the S
matrix

Su Si 513"
S=1Ss Su S} (2)
Sz Sz SuJ

‘The matrix @ is given by [3], [4], [6]

i qi2 G2
Q=1qs qu (Ilz-l (3)
qiz2 Q13 qu
where
=1~ ]Sn’z—- [512[2—- [513[2 @
g1z = SuSis* + S12515* + S1sSu* (5)
q1z = q12*. (6)

The matrix @ is positive real provided
| 2] < qu. @)

The bounds of (7) are given in [3] with gu and | gis| as parameters.
This gives the allowable values of the scattering parameters.

In what follows, the above inequality relation between the scatter-
ing parameters will be replaced by implicit ones. This is done by
directly forming the S- and @Q-matrices of the junction in terms of
eigenvalues of the dissipation matrix. These eigenvalues represent the
dissipation associated with each possible way of exciting the junction.
They are related to the loaded and unloaded Q-factors of the junction
eigennerworks. \

If the scattering and dissipation matrices have common eigenvec-
tors, their eigenvalues may be related by the following theorem
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Fig. 1. Scattering-matrix eigenvalues.
[8]:if
QUn = QnUn (8)
then
f (Q) U, = f (Qn) U, (9)

where U, is an eigenvector.
Using (1) in conjunction with (9) gives, in the case of the 3-port
junction,

qo = 1 — sos0* (10)
g =1 — spspr* 11)
g1 =1 —s_154* (12)

Equations (10)-(12) may be used to construct the scattering matrix
in terms of the eigenvalues of the dissipation one. In a lossless junc-
tion, the amplitudes of the scattering-matrix eigenvalues are unity,
while if the junction is lossy their amplitudes will depart from unity.
The angles between the eigenvalues that apply to a circulator with
Si2=~—1 are shown in Fig. 1.

It is seen from the above that the eigenvalues of the dissipation
matrix represent the dissipation associated with each possible way of
exciting the junction. These eigenvalues are real quantities that be-
come zero when the corresponding ones of the scattering matrix be-
come unity. The entries of the dissipation matrix are

ot gutga

/483 3 (13)
g F g6t 4 g gitels

e 3 a9
e—izms - qg_ 61"21H3

q13=40+q+1 + g ) 1s)

3

Here, gu represents the total dissipation of the junction and g, is a
complex quantity that determines the allowable relation between the
scattering parameters. This has been observed in [3].

In what follows the eigenvalues of the @-matrix will be related to
the loaded and unloaded Q-factors of the junction eigennetworks.
This does away with the need to rely on the inequality relation given
by (7).

The relation between the entries of the scattering matrix is also
obtained directly by evaluating this matrix in terms of its eigen-
values. These are given by [8]

S0+ Sp1 521

Su = 3 (16)
Leitwl3 _g—iewis
S = 2T O o a7
3
—32m {3 723
S = S0 + S14€ 3 + s_1€ . (18)

The scattering eigenvalues are related here to the dissipation
ones by (10)-(12).

1I1. EIGENVALUES OF ADMITTANCE AND DISSIPATION MATRICES

The dissipation and scattering eigenvalues can be related to the
physical variables of the junction eigennetworks by using the rela-
tion between the eigenvalues of the scattering and admittance
matrices:

(19)
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Fig. 2. Distributed eigennetworks.

_1—y+1

7 20,
S+1 1+y+1 ( )
1—-y_1
= 21
S-1 1+, (21)

The admittance eigenvalues are related to the angles that the
scattering-matrix eigenvalues make by

. 60
Yo = —j cot —~ (22)
0.1 )
yu = —j cot 2*‘ = j tan -~ (23)
oy’ 0
yo1= —j cot 2‘ = jtan _2‘1' (24)

The primed and unprimed angles are shown in Fig. 1.

The equivalent circuits of the admittance eigenvalues y,; and
y-1 are short-circuited transmission lines of electrical length 6..'/2
and 6.,'/2, as shown in Fig. 2. For 3-port circulators for which
Sia= —1, the electrical length 6y’ of the admittance eigenvalue s, is
zero. One way in which damping may be introduced into the admit-
tance equation is by adding an imaginary part je to 6'/2.

In the presence of loss, the input admittance of the v, network
becomes

¥4 = coth ( Jagd + g‘;—l’> (25)
The reflection coefficient of this network is
Syl = —e k1] .gTiblhl = g lmt1]. gmil04, (26)
If 244/ is small, (26) becomes
se1 = (1 — 2al)ei0+1, @7
Substituting (27) into (11) gives
i g+1 = 4ol (28)

Equation (28) again shows that the dissipation eigenvalue gives the
total dissipation of the eigennetwork.

In the vicinity of the frequency at which the networks are /4
long (941 =60."=180°), they may be replaced by shunt lumped-
element resonators. This allows the variables of the distributed- and
lumped-element networks to be related. The circuit considered in this
section is the shunt resonator shown in Fig. 3, which applies to the
¥+ network. It consists of a lumped-element shunt capacitance and
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Fig. 3. Approximate lumped equivalent eigennetworks for ¥ ;1.

inductance. The dielectric and magnetic losses are represented by
equivalent shunt resistors.
The total normalized input impedance for this circuit is

Yo o .
i 726,101 + Q41/Qu.a (29)
where
26, ~ 2 (‘i’—_—‘”i‘) (30)
w+1

Here, Q41 and Qu,41 are the loaded and unloaded Q-factors of the
equivalent lumped network and w;; is the resonant frequency of the
network.

The input admittance of the distributed network in the vicinity
of the frequency at which the network is A/4 long is, from (25), given
by

(7 [/
sy ~itan 2 et (14 tan"21) @31
Comparing (29) and (31) gives
[
-;i ~ 26,1041 (32)
[
a+1l =~ Q+l cos? . (33)
U1
Combining (28) and (33) one now has
Q+1 0.1
~ 4 ( ) cos? — - 34
d41 Ourt 2 (34)
In a similar way one has
04 01
a =4 ( ) cos? — 35
g-1 O 3 (35)
g =0 (306)

go 1s zero because it is associated here with a nonresonant eigennet-
work,

IV. SCATTERING MATRIX OF LOssy RECIPROCAL
3-PorT JUNcCTION

For a reciprocal 3-port junction the degenerate eigenvalues are
equal:

S41= S = 81 37
gu=ga=aq (38)
Vi1 = Y1 = Y1 (39)

At the frequency at which maximum power transfer through the
junction occurs, the angles of the eigenvalues are

O =00=10=0 (40)
The scattering matrix eigenvalues are therefore
s = (1 -2 (a1)
o = —1 (42)
where
O
=4 ( ) 43
g1 Oun (43)
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The ccefficients of the scattering matrix are

1—
[Su| = ——2 (44)
2 —q/2
]Su[ = [Slal = —‘—SQ1/ . (45)
In terms of the original variables one has
1 470 )
Syl=2-2 46
[ Sul 3730 (46)
2 270 )
Sl = |Su|=5-% . 47
[Sia] = | Sl 3 3\Qun 4n
V. 5CATTERING MATRIX OF Lossy 3-PorT CIRCULATOR
For an ideal circulator, the angles of the eigenvalues are
0 =3 (48)
o= —3 (49)
The eigenvalues of the scattering matrix are, therefore,
Sp1 = <1 — q%l)eirm (50)
s = (1 - 2:3.)5—:‘«/3 (51)
2
Sp = = - 1 (52)

Using the above eigenvalues, the entries of the scattering matrix
are

lSul-‘- |Sw|=—q;—1 (53)
lSul=1-—g;—l— (54)
provided
gy = g1 (55)
In terras of the original variables, the result becomes

1
'Sn,= |S13 =—2-Q(?:1 (56)
[ Su] =1-— QQ‘ (57)

%1

Hence, S1#0, Si2#%1, and Siz=Su. This is the result obtained in
[5]1, [10] n the case of the lumped-element circulator.

The above scattering coefficients satisfy (1), as can be seen by
forming (7).

Fig. 4 shows the relation between Sy and Sp (Su=Sw).

V1. SCATTERING MATRIX OF SEMI-IDEAL CIRCULATORS

Semi-ideal circulators are ones in which either Si =0, Spe#1, and
S135%0, or Su#0, Sie#1, and S13=0. The first situation is obtained
when the angle between s,y and s is less than |120]. The second
case is obtained when the angle between the eigenvalues is larger
than |120].

The scattering parameters are given in terms of their eigenvalues
by

35 = —14 (1 - 3;_‘ it (1 - g;—‘) e+ (58)
3= 1+ (1= 22) crenemm g (1= E0) oo (59)
3y = —1+ (1 _ 2’;_‘) i (0414120 (1 — 2;_1) ¢OHIH2D)  (60)
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Fig. 4. Relation between S parameters of semi-ideal circulators.

where it has been assumed that one has symmetrical splitting:
(61)

In semi-ideal circulators, Su and Sz are completely determined
by Siz, provided it is assumed that the amplitudes of s, and s are
equal and the splitting is symmetrical. This means that the latter
quantity can be obtained simply by measuring either Sy or S

The first case to be considered is the one in which the angle
between s4; and s_; is such that Si; =0. This condition is obtained by
setting S; =0 in (58). The relation between Siz and Si; is given
graphically in Fig. 4.

The second case to be considered here is the one in which the
angle between 5,1 and s_; is such that Si;=0. This condition is ob-
tained by setting Si3=0 in (60). The relation between Sy and Siz
is shown in Fig. 4.

6.1 = -0

VII. CoNcLUSIONS

The relation between the dissipation and scattering eigenvalues
in lossy junctions has been given. The results have been used to
directly construct the scattering matrices of a number of 3-port
lossy junctions. These results can also be applied to junctions with
unequal dissipation eigenvalues that lead to asymmetric frequency
responses of the scattering parameters,
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Correction to “Scattering by a Ferrimagnetic Circular
Cylinder in a Rectangular Waveguide”

N. OKAMOTO axp Y. NAKANISHI

In the above paper,! sin™! ¢in (17) (Section I11-B, p. 524) should
be interpreted as = —Sin~! £, where Sin™! { denotes the principal value
of sin~! ¢. Therefore, (23) and (24) should read as follows:

) 4
Su= 3 (14, —— sin (@— 5 Sin1 T ()
e Bia a koa
and
= 4 :
Su=1+ 3 An— sin (’—rﬁ+n5in—1l) )
P— Bia a koa

respectively. Accordingly, Table I should be modified as shown.
The corrected numerical evaluation of | S| 2+ ] Su | 2shows that the
unitary condition of the S-matrix is satisfied within a roundoff error
for any value of parameters. This is due to the fact that the unitary
conditions of the S-matrix is guaranteed for any size of truncation in
our formulation of the paper [1]. The following is a proof of this
property. The electric field outside the post is expressed as follows:
2 A X

Rseroo 2=—c0

& . X
E, = Ey 2_ Ja(po")e 00+ sin (1—:7(1 + na) + Eo

[Ho® (o) e intst — (—1)nH, @ (p)eme—],  (3)

Consider a region enclosed by two contours ABCDA and F, as shown
in Fig. 1. Application of the two-dimensional Poynting theorem to
this region yields

1 1
- —_ x’ _ *
Re [2 f (B fDCE,Hz dx:l
1
+ Re [—55 E,Hg*dl:l —0. 4
20 F

On the contour AB and DC far from the post, E; in (3) can be re-
written in the form

E, = Lo sin "2 (i1 - Sy,000) (5)
a
and
X
E. = Eysin —.Sye16v 6)
a

respectively. Substitution of (5) and (6) and their corresponding
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